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Economic optimization in a fixed sequence of
unreliable inspections
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Tel Aviv University, Ramat Aviv, Israel

Given a fixed sequence of unreliable inspection operations with known costs and inspection error probabilities of two
types (classifying good items as defective and vice versa), we develop a model for selecting the set of inspections that
should be activated in order to minimize expected total costs (inspection and penalties). We present an efficient branch
and bound algorithm for finding the optimal solution, and two variations of a greedy heuristic that can be applied
jointly to provide very good solutions at a O(n2) computational complexity. The conclusions are backed by a factorial
experiment that included 1440 problem instances.
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Introduction

Notwithstanding the modern emphasis on defect prevention

and process improvement, inspection of the output of

production or service activities is still an effective way of

preventing defects from reaching the subsequent production

stages or, eventually, the customer. Basically, inspection can

be conceived of as the classification of each item into one of

two mutually exclusive categories: either it is ‘good’, that is,

fully conforms to specifications and expectations, or it is

‘defective’, that is, contains at least one defect, or deviation

from specifications. Inspection processes and technologies

have vastly improved over the last decades, but still in many

cases they are not fully reliable. There are two types of

inspection errors: classification of a good item as defective

(Type 1), and classification of a defective item as good (Type

2). The correctness of the final disposition decision can be

improved by taking into account the results of several

inspections carried out on the same item. Here we need to

address the issue of which inspections should be carried out,

out of a given set of possible candidates. This issue is

particularly relevant when we consider the costs, which

include, in addition to the inspection costs, the cost resulting

from incorrect decisions: rejection of good items and

acceptance of defective ones. This subject has received a

fair amount of attention in the research literature.

Raz and Thomas1 presented a model based on a ‘branch-

and-bound’ algorithm to determine the cost-optimal order of

a set of inspections that are subject to errors of various types

and costs while meeting a given average outgoing quality

level. Raz and Bricker2 expanded that model to include

constraints on the percentage of good units among those

rejected. Later on, Raz and Bricker3 developed heuristic and

optimal solutions for the variable inspection problem,

whereas the next inspection to he carried out depends on

the outcomes of the inspections performed so far. This work

was expanded in Raz and Bricker4 to account for situations

where all inspections selected must be carried out on all

units, and when their order may be fixed or variable.

Duffuaa and Raouf5 and Raouf et al6 presented a model

for the optimal ordering of multiple inspections to minimize

total cost. Liou et al7 found an analytical solution for the

model of Raz and Thomas1 under certain conditions by

modifying slightly the cost model. Their solution provides

the number of inspectors and their optimal sequence in

several cases when all inspectors have the same inspection

errors and the same sampling fraction. For other cases, they

suggest solutions based on the rules developed by Raouf

et al.6

Yum and McDowell8 developed a binary programming

model that allows for repair, replacement or salvage of

defective units, with disposition costs varying accordingly.

Viswanadham et al9 proposed heuristics based on a genetic

algorithm and on simulated annealing for locating inspec-

tions in production systems in order to minimize cost. The

model of Shaoxiang and Lambrecht10 maximizes profit while

allowing for repeated inspection of the product features.

In this paper, we consider the problem of selecting, out of

a set of available inspection operations, the subset that will

maximize the expected profit per item produced, while

accounting for both direct inspection costs and for the costs

caused by inspection errors. The available inspections are

subject to both types of errors, and the order in which they
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can be carried out is already determined. The paper is

organized as follows. In the next section, we present the

assumptions of the model and the notation that will be used.

Then, we formulate the objective function to be minimized,

and present a branch and bound algorithm for finding the

optimal solution. Since the optimization problem has non-

polynomial computational complexity, we propose a greed

heuristic and report the results of an experiment aimed at

assessing its performance as well as the performance of the

branch and bound algorithm. We conclude with a discussion

of some practical implications of this work and with

directions for future expansion.

Assumptions and notation

There is a set of n available inspections, each with known

and constant parameters: unit inspection costs, and mis-

classification probabilities (Types 1 and 2 errors). The order

in which the inspections are to be carried out is already

determined by technological, logistics or administrative

constraints. We wish to select one or more inspections out

of this set (if it has cost justification) to carry out on each

and every item produced at a certain production stage. If

more than one inspection is selected, then they are all carried

out according to the predetermined order. If an item is

classified as good, then it is submitted to the next inspection

in the sequence or, if it is the last inspection in the sequence,

it is delivered to the customer. If the item is classified by a

certain inspection as defective, then no more inspections are

performed on it, and the item exits the system and is

disposed of as if it were defective, without any salvage value.

The development of the model is based on the following

assumptions:

1. The results of a given inspection are independent of those

of other inspections in the sequence.

2. The probability distribution function of any given item

being good or defective is independent of that of the other

items.

3. Each available inspection can appear at most once in the

sequence.

The following notation will be used throughout the

development:

i¼ the inspection index (i¼ 1,y, n)

Bi¼ the cost of inspecting one item by inspection

i(Bi40)

REV¼ the revenue for supplying a good item to the

customer

PEN¼ the penalty for supplying a defective item

to the customer. The penalty is in addition to

the loss of revenue that would have been

generated if the item were good

fi¼ probability of a Type 1 error in inspection i

(i¼ 1,y, n)

yi¼ probability of a Type 2 error in inspection i

(i¼ 1,y, n)

q0¼ q¼ probability of an item being defective

p0¼ 1�q¼ probability of an item being good

qi¼ probability of an item being defective and

classified as good by the first i inspections in

the sequence

pi¼ probability of an item being good and

classified as good by the first i inspections in

the sequence

Given that the order of the inspections is fixed, it is

advantageous to view the inspection sequence as including

all the n available inspections, some of them being active and

the rest inactive. An active inspection is one that is actually

carried out on the items produced, and entails the

corresponding costs and error probabilities. An inactive

inspection is one that is not performed; as such it incurs no

cost and rejects no items. Thus, we can define the decision

variable for our model, xi as follows:

xi ¼
1 if inspection i is active
0 if inspection i is inactive:

�

Objective function

If inspection i is inactive, then its effective unit cost is 0; its

effective probability of Type 1 error is 0, and its effective

probability of Type 2 error is 1. The effective cost and error

probabilities of any inspection, either active or inactive, can

be stated mathematically as follows.

Effective cost : Bi � xi ¼
Bi if xi ¼ 1
0 if xi ¼ 0

�
ð1Þ

Effective probability of Type 1 error :

fi � xi ¼
fi if xi ¼ 1

0 if xi ¼ 0

� ð2Þ

Effective probability of Type 2 error :

yi � xi þ 1 � xi ¼
yi if xi ¼ 1

1 if xi ¼ 0

� ð3Þ

The principle of operation of the inspection sequence is

that items proceed from one inspection to the next only if

they are classified as good. Accordingly, the probability that

an item will be good and will be classified as good by the

first i (i¼ 1,y, n) inspections is equal to the probability that

the item is good multiplied by the product of the

probabilities that each of the first i inspections will not

commit a Type 1 error and classify a defective item as good.

Using the notation introduced in (1)–(3). we obtain the

following:

pi ¼ ðl � qÞ � ð1 � f1 � x1Þ � ð1 � f2x2Þ � � � ð1 � fixiÞ ð4Þ
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Similarly, the probability that an item will be defective and

classified as good by the first i (i¼ 1,y, n) inspections is

equal to the probability that the item is defective multiplied

by the product of the probabilities that each of the first i

inspections will commit a Type 2 error and classify the item

as good:

qi ¼q � ðy1x1 þ 1 � x1Þ � ðy2x2 þ 1 � x2Þ � � �
ðyixi þ 1 � xiÞ

ð5Þ

The objective is to maximize the expected profit from

the operation. The profit term excludes the production

costs of the items, since these are already sunk costs.

Profit, or net revenue, consists of the following three

terms:

1. The expected revenue from supplying good items to the

customer, which is the product of the revenue (REV) and

the probability of supplying a good item to the customer

(pn).

2. The expected penalty for supplying defective items to the

customer, which is the product of the value of the

financial damage (PEN) and the probability of supplying

the customer a defective item (qn).

3. The expected cost of quality inspection per item, which is

the sum across all the inspections (i¼ 1,y, n) of the

product of the cost of inspecting the item in inspection i

(Bi xi, according to Equation (1)) and the probability that

the item (good or defective) will reach inspection i, which

is equal to Pi�1þ qi�1.

The first term represents revenue and consequently is

positive. The two other terms reflect costs and are negative.

Combining the three gives the following expression for the

expected profit per item:

E½Profit� ¼pn � REV � qn � PEN

�
Xn

i¼1

½pi�1 þ qi�1� � Bi � xi

ð6Þ

Substituting (4) and (5) into (6), we obtain the following

expression for the objective function:

E½Profit� ¼ð1 � qÞ �
Yn

i¼1

ð1 � fi � xiÞ � REV

� q �
Yn

t¼1

ðyi � xi þ 1 � xiÞ � PEN

�
Xn

i¼1

ð1 � qÞ �
Yi�1

j¼1

ð1�fj � xjÞ
"

þ q �
Yi�1

j¼1

ðyj � xj þ 1 � xjÞ
#
� Bi � xi

ð7Þ

Optimal solution

Finding the values of x that maximize the expression in (7) is

a combinatorial problem that has no structural constraints

besides that the decision variables are binary. Its computa-

tional complexity is O(2n). The problem can be formulated

as the following binary programming problem:

max:

�
E½Profit� ¼ð1 � qÞ �

Yn

t¼i

ð1 � fi � xiÞ � REV

� q �
Yn

i¼1

ðyi � xi þ 1 � xiÞ � PEN

�
Xn

i¼1

1 � qð Þ �
Yt�1

i¼1

ð1 � fj � xiÞ
"

þ q �
Yi�1

j�1

ðyj � xi þ 1 � xiÞ
#
� Bi � xi

)

s:t: : xi ¼ f0; 1g
ð8Þ

This problem can be solved by using a general algorithm

for solving binary programming problems. However, the

objective function is quite complicated, and might be

difficult to adapt to the format required by a general

optimization program. Instead, we propose to exploit the

specific structure of the problem by applying the branch-

and-bound approach to find the optimal solution.

A branch and bound algorithm

The elements of the branch-and-bound algorithm for this

problem are introduced and defined next, followed by a

description of the algorithm.

Node: A vector of length n whose elements are the decision

variables (x1x2yxn). Each decision variable can be in one of

two states: determined (meaning that its value has been set to

either ‘0’ or ‘1’), or undetermined, denoted by ‘?’, meaning

that its value has not been set yet. We restrict the structure of

the vectors so that all the undetermined elements appear at

the end. Thus, the vector consists of two parts: elements 1

through m, which are all determined, and elements mþ 1

through n, which are all undetermined, with 1pmon. The

node represents a subset of the solution space corresponding

to all the solutions, where the first m inspections are either

active or inactive as determined, and the other inspections

may be active or inactive. Thus, a node with a vector with m

determined elements represents a subset that contains 2n�m

possible solutions.

Basic sequence: A specific sequence contained in the subset

of the solution space defined by the node. The basic sequence

is the sequence obtained by setting all the undetermined

elements of the node vector equal to ‘0’. In other words, the

basic sequence is that which includes only the inspections

that have been determined. Obviously, the basic sequence is

a feasible solution to the problem.
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Empty node: A node with a vector with all its elements

undetermined (?y??)

Full node: A node with a vector with all its elements

determined. A full node represents a single feasible solution:

theoretically there are 2n full nodes.

Valid node: A node where the last determined element, xm,

is equal to 1. This concept is used to create an effective

branching process.

Branching is the process of creating two or more child

nodes out of a given node. The child node inherits the

determined elements of the parent. It seems intuitive to create

two children out of each node, corresponding to xmþ 1¼ 0 and

1. We prefer to use a different approach that seems more

effective. From a node consisting of m determined elements

and n�m undetermined elements, we create n�m child nodes.

Each child node is obtained by setting one of the undeter-

mined elements say .xk, mþ 1pkpn, equal to ‘1’, setting all

previously undetermined elements xm�1 through xk�1 equal to

‘0’, and leaving elements xkþ 1 through xn undetermined, as

they were. For example, the node ‘x1x2yxn????’ will be

branched into the following child nodes: ‘x1x2yxm1???’,

‘x1x2yxm01??’, ‘x1x2yxm001?’, ‘x1x2yxm0001’. Clearly,

every node obtained by branching in this way is valid.

For every child node we calculate two quantities: the value

of its basic sequence, and an upper bound on the values of

the sequences included in the subset of the solution space

defined by the node. The basic sequence, which was defined

earlier as the sequence consisting of only the inspection

whose state has been determined, is evaluated using the

expression on the right-hand side of (7).

The upper bound of the node is calculated, taking into

account the positive contributions of all the inspections that

can still be activated, and ignoring their negative contribu-

tions. The positive contribution results from the reduction in

the expected penalty for accepting defective units. The

negative contributions consist of the additional inspection

costs and the increase in lost revenue due to rejection of good

items. In other words, the upper bound is calculated by

assuming that all the undetermined inspections will be carried

out at zero cost and without incurring a Type 1 error. For a

node with m inspections whose state has been determined and

n�m undetermined inspections (x1yxm?y?), the upper

bound UB{} is calculated according to Equation (9).

UBfE½Profit�mg ¼ð1 � qÞ �
Ym

i¼1

ð1 � fi � xiÞ � REV

� q
Ym

i¼1

ðyi � x � 1 � xiÞ �
Yn

j¼mþ 1

yj � PEN

�
Xm

i¼1

ð1 � qÞ �
Yi�1

j¼1

ð1 � fj � xjÞ
"

þ q �
Yi�1

j¼1

ðyi � xi þ 1 � xiÞ
#
� Bi � xi

ð9Þ

The added component relating to E[Profit] is
Qn

j¼mþ 1 yj

which reduces PEN, as if all the undetermined inspections

were active.

We start with the empty node and calculate its value,

which, in effect, corresponds to the case where no

inspections at all are activated. This becomes the current

best feasible solution. Then we branch from that node, and

for each child node we calculate its value and its upper

bound. If the value of any of the newly created nodes is

higher than that of the current best solution, then the basic

sequence of that node becomes the current best. All the

nodes with an upper bound value lower than that of the

current best solution are closed. This cycle is repeated for all

remaining open nodes, until no more branching is possible.

At this point, the current best solution is identified as the

optimal solution and the process stops. An evaluation of the

efficiency of our branch and bound technique appears later

on, following the description of the evaluation experiment.

Heuristic solution

The branch-and-bound technique does not reduce the

theoretical computational complexity of the problem, which,

in our case, is exponential in n. In this section, we present a

heuristic technique for solving the inspection selection

problem. The heuristic solution can be used as is or can

serve as a good initial ‘current best’ solution if we wish to

seek the optimum with branch and bound.

Our heuristic is of the ‘greedy’ type, whereas at each

iteration we make the decision that provides the greatest

immediate improvement of the objective function. Greedy

heuristics have been applied to solve inspection systems

design problems — see for instance Raz and Bricker.3 There,

the heuristic consists of adding the inspection that generates

the greatest improvement in the value of the objective

function. Here, we consider two variations:

1. Starting with the empty sequence, we activate, one at a

time, the inspection that results in the greatest improve-

ment.

2. Starting with the full sequence, we deactivate, one at a

time, the inspection, which, if omitted from the sequence,

results in the greatest improvement.

Both variations stop when the next step, either activation

or deactivation according to the case, does not bring about

an improvement in the objective function. For a set of n

available inspections, there are at most n iterations, iteration

k consisting of n�k evaluations of the objective function. We

propose to apply the two variations and to choose the better

of the two resulting solutions.

The computational complexity of the heuristic is obtained

as follows. In the first iteration, n inspections of the set are

evaluated, in the second iteration the remaining n�1

inspections are evaluated, and in each successive iteration
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one more inspection is removed. The worst possible case

occurs when we need to carry out all n iterations, which

means that the number of calculations of the objective

function is the sum of the following arithmetic progression:

Sn ¼ n þ ðn þ 1Þ þ ðn � 2Þ þ � � � þ 1

¼ 1
2
� n � ðn þ 1Þ ¼ 1

2
� n2 þ 1

2
� n

ð10Þ

This expression corresponds to O(n2)

Experimental design

In order to assess the quality of the solutions obtained with

the branch-and-bound technique and with the heuristics, we

carried out an experiment with simulated data. We used a

factorial design for the experiment, with seven factors and

two or three levels for each factor. The factors corresponded

to the parameters of the problem (number of inspections,

costs and error probability parameters). All the factors had

low and high levels, and some also had an intermediate level.

The levels were chosen so that the sample would not only be

representative of the population of practical problems, but

would also exhibit one order of magnitude of variability.

Due to technological and practical constraints very seldom

does the number of inspections exceed ten. Thus, the number

of available inspections was set at two levels: a low level of 8,

which is a small number amenable to optimization by

complete enumeration, and a high level of 16 which, while

representing the range of the number of different inspections

possible after a given process, does not require an

unworkable amount of computing resources. The high level

values of q, REV and PEN are greater than the low level

values by a factor of 10. As for the values of the cost and

error probabilities of the eight or 16 individual inspections in

each problem, these were obtained from uniform distribu-

tions. For the inspection cost Bi the same distribution mean

was used for the two factor levels, with a smaller variability

(720%) for the low level and a higher variability (780%)

for the high level. For the two factors corresponding to the

error probabilities, the range of the uniform distribution was

the same (725%), but there the mean of the high level was

ten times greater than that of the low level. For these two

factors we also defined an intermediate level, where half of

the individual inspection error probabilities came from the

low level and half from the high level. The full details of the

experimental design are summarized in Table 1.

Of the seven experimental factors defined, five have two

levels and two have three levels, such that altogether

25� 32¼ 288 different combinations of experimental factor

levels are obtained. We took five observations for each

combination, giving a total of 5� 288¼ 1440 sample points

from the population of possible problems. For each problem

we found the optimal solution with the branch and bound

technique, and the heuristic solutions. The analysis of the

results is presented in the following two sections.

Performance of the branch and bound algorithm

Theoretically, the application of a branch and bound

solution procedure does not reduce the computational

complexity of the problem. However, from the practical

perspective we would expect a significant reduction in the

actual effort with respect to a full exhaustive search. In

addition to the running time, an appropriate way of

measuring computational effort is by considering the

number of times that the objective function (8) was

evaluated. For the exhaustive search, this is equal to the

total number of solutions in the feasible space. In our

experiment, that will be 28¼ 256 for n¼ 8 and 216¼ 65536

for n¼ 16.

As for the branch and bound, we should take into account

that each node visited by the algorithm involves two

calculations of similar effort: evaluation of the objective

Table 1 Details of the experimental design

Factor Low level High level Intermediate level

n n=8 n=16 Not applicable
q q=0.02 q=0.2 Not applicable
Distribution of Bi Bi=10720%. Individual values

uniformly distributed BiBU(8,12)
Bi=10780%. Individual values
uniformly distributed BiBU(2,18)

Not applicable

REV REV=10B (B=mean value of Bi) REV=100B Not applicable
PEN PEN=50B PEN=500B Not applicable
Distribution of ft ft=0.001725%. Individual values

uniformly distributed ftBU(0.00075,
0.00125)

ft=0.01725%. Individual values
uniformly distributed ftBU(0.0075,
0.0125)

Half the values (i=1yn/2)
from the low level and half
(i=n/2–1,y, n) from the high
level

Distribution of yI yI=0.025725%. Individual values
uniformly distributed yIBU(0.01875,
0.03125)

yi=0.25725%. Individual values
uniformly distributed yiBU(0.1875,
0.3125)

Half the values (i=1yn/2)
from the low level and half
(i=n/2–1,y, n) from the high
level
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function for the solution corresponding to the node, and

evaluation of the upper bound, according to Equation (9).

Thus, the computational effort required to find the optimal

solution with the branch and bound is equal to twice the

number of nodes visited, and in theory may exceed the

computational effort required by exhaustive search.

Table 2 shows the average, median and maximum (worst

case) number of calculations and running times for the

problems in the experiment. Since we expect these statistics

to be strongly affected by the size of the problem in terms of

number of inspections available, we distinguish between

n¼ 8 and 16.

From Table 2 we can see that for the smaller problems

(n¼ 8) on the average, the branch and bound procedure

required about 36% of the number of calculations that

would have been needed for an exhaustive search, and about

26% of the computing time. For the larger problems (n¼ 16)

the ratio is even more favorable: only about 1% of the

calculations and 0.8% of the time.

The advantage of the branch and bound is more evident

when looking at the median of the sample measurements:

25% of the calculations and less than 1% of the time for

n¼ 8: 0.3% of both the calculations and the time for n¼ 16.

The relation between the mean and the median indicates that

the majority of the observations were located at the low end

of the scale, with very few observations in a thin, long tail to

the right.

These findings are illustrated in Figures 1–4, which show

the distribution of the number of calculations and the

running times for the two problem sizes. The fact that the

advantage of the branch and bound is more significant in the

larger problems is also interesting. This finding is reinforced

by the analysis of the worst cases. We can see that, for n¼ 8,

the worst case of the branch and bound algorithm required

about 70% more calculations and about twice as much time

as exhaustive search. However, for n¼ 16, even the worst

case was significantly better than exhaustive search, requir-

ing only about 15% of the number of calculations and 17%

of the time. We may conclude that our branch and bound

algorithm is indeed efficient, and that its efficiency is more

significant for problems of larger size.

Table 2 Statistics on the number of calculations and running times with branch and bound

n=8 n=16

Value % of exhaustive search Value % of exhaustive search

Exhaustive search Number of calculations 256 65536
Running time (ms) 54 41363

Average Number of calculations 92.7 36.2 668 1.0
Running time (ms) 14 25.9 328 0.8

Median Number of calculations 64 25.0 211 0.3
Running time (ms) o0.5* o1 109 0.3

Maximum Number of calculations 436 170.1 11130 15.2
Running time (ms) 109 201.9 6077 17.0

*The computer function that measured running times rounded the results to the nearest millisecond.

Figure 1 Distribution of the number of calculations for the
branch and bound solution of the small problems (n¼ 8).

Figure 2 Distribution of the number of calculations for the
branch-and-bound solution of the large problems (n¼ 16).

Figure 3 Distribution of the running time for the branch-and-
bound solution of the small problems (n¼ 8).
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Performance of the heuristics

Table 3 shows the average, median and maximum number of

calculations and running times for the problems in the

experiment. For n¼ 8 the average number of calculations as

a percentage of the number for exhaustive search was

21.3%. In the larger problems (n¼ 16), the corresponding

average percentage was only 0.27%, two orders of

magnitude smaller. Of course, the reason for this dramatic

change lies in the ratio of the respective computational

complexities (n2/2n), which declines very rapidly as n

increases. In the small problems (n¼ 8) there was a large

difference in the running times. The median was less than

half a millisecond and the maximum was equal to the

exhaustive search (54ms), which is 100 times larger. In the

large problems (n¼ 16) the difference was much smaller. The

average (102ms) and the median (109ms) were quite close to

each other, while the maximum was 163ms, which is just 1.6

times larger.

It appears that the relative advantage of the heuristics,

similar to that of the branch and bound algorithm, becomes

more significant as the problem size grows. These results

suggest that for problems with more than 16 available

inspections the performance of the heuristics will be even

more attractive.

Finally, we carried out an analysis of variance on the

sample results. The purpose was to find out if certain levels

of some of the factors in the experiment were associated with

significantly better or worse performance of the heuristic.

The full factorial model with 43 degrees of freedom

(including all main factors and all first level interactions)

accounted for only R2¼ 6.74% with P-value of 0.0001 (due

to 1396 degrees of freedom of the error term). The meaning

of this low R2 is that the percentage deviation of the heuristic

solution from the optimal solution is virtually unaffected by

the various levels of the experimental factors presented in the

model. From this, we may conclude that the quality of the

heuristic solution is excellent for two reasons: Not only is the

average percentage deviation from the optimal solution very

low on the average, but it is also insensitive to all the

experimental factors and interactions among them. In other

words, under a broad set of parameter values the heuristic

will yield the optimum or very close to it. Accounting for the

fact that the computational complexity of the heuristic is

O(n2), while that of the original optimization problem is

O(2n), we believe that it is a practical and highly efficient

alternative to branch and bound optimization. In the

following section, the percentages of optimal solution for

the heuristics are exposed.

Comparison of the activating and deactivating heuristics

In this section, we compare and discuss the performance of

the two variations of the greedy heuristic, activating (AH for

short) and deactivating (DH). Table 4 shows the joint

distribution of the solutions obtained in terms of their

optimality. Looking at the first row and column, it can be

seen the AH reached the optimal solution in 86.87% of the

cases, while the DH reached the optimum in 93.34% of

the cases. Thus, it appears that though they are both good,

the deactivating heuristic is somewhat superior.

It is interesting to look at the joint distribution. In about

81% of the problems in the experiment, both heuristics

reached the optimal solution. In about 18% of the cases, one

heuristic succeeded in reaching the optimum while the other

did not. This finding clearly indicates that the two heuristics

complement each other: When one fails to yield the best

solution, the other one is quite likely to do so. In fact, there

Figure 4 Distribution of the running time for the branch-and-
bound solution of the large problems (n¼ 16).

Table 3 Statistics on the number of calculations and running times with the combined heuristic

n=8 n=16

Value % of exhaustive search Value % of exhaustive search

Exhaustive search Number of calculations 256 65536
Running time (ms) 54 41363

Average Number of calculations 54.6 21.3 175 0.27
Running time (ms) 8.6 15.9 102 0.25

Median Number of calculations 53 20.7 169 0.26
Running time (ms) o0.5* o1 109 0.26

Maximum Number of calculations 65 25.4 202 0.31
Running time (ms) 54 100.0 163 0.39

*The computer function that measured running times rounded the results to the nearest millisecond.
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were very few instances (12 out of 1440 problems, or 0.83%)

where both heuristics failed to reach the optimum. Since the

computational complexity of both heuristics is low, O(n2), it

is clear that they should be applied jointly. Of the two

versions, the DH appears to be superior, as it contributed a

share of optimal solutions (12.30%) more than twice as large

as the AH (5.83%)

Table 5 provides additional support to this conclusion.

The table shows, for each heuristic separately and for the

two combined, the average percentage deviation from the

optimal value of the objective function, the median and as

well as the worst case for n¼ 8 and 16 inspections. Here

again we see that the DH is superior to the AH, in terms of

both the average and the worst case. However, applying the

two heuristics jointly improves performance by an order of

magnitude, bringing the average deviation to 0.002% and

the worst case to less than 1%.

We believe that the better performance of the DH is the

result of its ability to take advantage of synergies between

two or more unreliable but relatively inexpensive inspec-

tions, which may function better than a single more reliable

but more expensive inspection. If the optimal solution

consists of a single activated inspection, then the AH, which

starts with the empty sequence, will find it in the first

iteration and will stop right after the second iteration. In

contrast, the DH will require n�1 iterations in order to reach

single-inspection solutions, and is not guaranteed to find the

optimum. In these cases, the AH has a clear advantage.

However, if the optimal solution consists of activating two

or more inspections, as is likely to be the case in most

practical situations, then the advantage will be on the side of

the DH. The reason for this is that by adding inspections one

at a time, the AH may ignore combinations of two or more

consecutive inspections, which if activated together con-

tribute more to the objective function than the single

inspection it selects for activation.

In mathematical terms, if we consider two inspections, i

and iþ 1, with parameters {fi, yi, Bi}and {fi�1, yiþ 1, Biþ 1}

their combined effect is that of an inspection with equivalent

Type 1 error probability of fiþfi�1�f1f2, equivalent Type

2 error probability of ytyi�1 and equivalent unit inspection

cost of Biþ [(1�q0)(1�f)þ q0yi]Bi�1, whereas q0 represents

the fraction non-conforming after inspection i�1 in the

sequence. This equivalent inspection is never considered by

the AH, while it is part of the starting solution for the DH

and consequently may be retained by it and eventually

become part of the final solution. Of course, similar

equivalence relationships can be developed for more than

two inspections and for nonconsecutive inspections. In other

words, the advantage of the DH stems from its ability to

consider combinations of inspections that the AH never gets

to evaluate, which is particularly helpful when the optimal

solution includes multiple inspections.

We should mention that greedy algorithms based on

removing rather than adding elements to the solution vector

are relatively rare in the field of inspection selection. In fact,

we are not aware of any similar deactivating heuristic having

been mentioned in the inspection system design literature.

Concluding remarks

In this study, we developed and analyzed optimal and

heuristic algorithms for selecting, out of a given set of

inspections subject to errors, those that should be carried out

in order to maximize the expected profit per item produced.

The results of the fairly extensive factorial experiment

suggest that even though the branch and bound algorithm

Table 4 Percentage breakdown of solution optimality for the two heuristics

Activating (AH)

Total (%) Optimal (%) Non-optimal (%)

Deactivating (DH) Total 100 86.87 13.13
Optimal 93.34 81.04 12.30
Non-optimal 6.66 5.83 0.83

Table 5 Deviation as a percentage of the optimal solution for each heuristic

Activating (%) Deactivating (%) Combined (%)

n=8 Average 0.12 0.04 0.00
Median 0.00 0.00 0.00
Maximum 9.82 5.63 0.13

n=16 Average 0.21 0.04 0.00
Median 0.00 0.00 0.00
Maximum 9.40 4.88 0.93
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that we proposed is efficient, it may not be required since the

application of the combined heuristics provides excellent

results under a wide range of problem parameters. For the

designer of the quality inspection system, our results provide

an easy to apply method for selecting which inspections

should be performed in order to minimize the economic

aspects of inspection costs and errors. For the researcher, the

results point out the advantages of a variation of the greedy

heuristic, namely the deactivating heuristics, which in this

case demonstrated clear superiority in arriving at or close to

the optimal solution.

The present study addressed an unconstrained situation,

except for the implied constraints on the order of the

inspections. The model could be extended to cases where

there are constraints, such as a constraint on the average

outgoing quality (AOQ), on the number of inspections or on

the inspection budget. Other extension to this work could

include having a penalty function that increases with the

fraction defective, as well as inspection error probabilities

that vary according to the incoming fraction nonconforming

at the inspection station.
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